Larger neural responses produce BOLD signals that begin earlier in time

نویسندگان

  • Serena K. Thompson
  • Stephen A. Engel
  • Cheryl A. Olman
چکیده

Functional MRI analyses commonly rely on the assumption that the temporal dynamics of hemodynamic response functions (HRFs) are independent of the amplitude of the neural signals that give rise to them. The validity of this assumption is particularly important for techniques that use fMRI to resolve sub-second timing distinctions between responses, in order to make inferences about the ordering of neural processes. Whether or not the detailed shape of the HRF is independent of neural response amplitude remains an open question, however. We performed experiments in which we measured responses in primary visual cortex (V1) to large, contrast-reversing checkerboards at a range of contrast levels, which should produce varying amounts of neural activity. Ten subjects (ages 22-52) were studied in each of two experiments using 3 Tesla scanners. We used rapid, 250 ms, temporal sampling (repetition time, or TR) and both short and long inter-stimulus interval (ISI) stimulus presentations. We tested for a systematic relationship between the onset of the HRF and its amplitude across conditions, and found a strong negative correlation between the two measures when stimuli were separated in time (long- and medium-ISI experiments, but not the short-ISI experiment). Thus, stimuli that produce larger neural responses, as indexed by HRF amplitude, also produced HRFs with shorter onsets. The relationship between amplitude and latency was strongest in voxels with lowest mean-normalized variance (i.e., parenchymal voxels). The onset differences observed in the longer-ISI experiments are likely attributable to mechanisms of neurovascular coupling, since they are substantially larger than reported differences in the onset of action potentials in V1 as a function of response amplitude.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of time and space invariance of BOLD responses in the rat visual system.

Neuroimaging studies of functional magnetic resonance imaging (fMRI) and electrophysiology provide the linkage between neural activity and the blood oxygenation level-dependent (BOLD) response. Here, BOLD responses to light flashes were imaged at 11.7T and compared with neural recordings from superior colliculus (SC) and primary visual cortex (V1) in rat brain--regions with different basal bloo...

متن کامل

Differential transient MEG and fMRI responses to visual stimulation onset rate

While recent analysis of functional magnetic resonance imaging (fMRI) data utilize a generalized nonlinear convolution model (e.g., dynamic causal modeling), most conventional analyses of local responses utilize a linear convolution model (e.g., the general linear model). These models assume a linear relationship between the blood oxygenated level dependent (BOLD) signal and the underlying neur...

متن کامل

Nonlinear coupling between evoked rCBF and BOLD signals: a simulation study of hemodynamic responses.

The aim of this work was to investigate the dependence of BOLD responses on different patterns of stimulus input/neuronal changes. In an earlier report, we described an input-state-output model that combined (i) the Balloon/Windkessel model of nonlinear coupling between rCBF and BOLD signals, and (ii) a linear model of how regional flow changes with synaptic activity. In the present investigati...

متن کامل

Increases in oxygen consumption without cerebral blood volume change during visual stimulation under hypotension condition.

The magnitude of the blood oxygenation level-dependent (BOLD) signal depends on cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen (CMRO2). Thus, it is difficult to separate CMRO2 changes from CBF and CBV changes. To detect the BOLD signal changes induced only by CMRO2 responses without significant evoked CBF and CBV changes, BOLD and CBV functional mag...

متن کامل

Spatial scale of correlated signals in 7T BOLD imaging

The spatial distribution of signals from magnetic resonance imaging (MRI) using measures of Blood Oxygen Level Dependent (BOLD) activations presents a fundamental limit on the ability of MRI to resolve the neural signals from the brain. Here we show that the multiple samples of low-level BOLD activity comprise a form of neural “imaging dust” with distinct spatial characteristics. We apply the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2014